MATH2060A Solution to Assignment1

Section 6.1

4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$ for rational x and $f(x) = 0$ for irrational x. Show that f is differentiable at $x = 0$ and find $f'(0)$.

We claim that f is differentiable at 0 with $f'(0) = 0$. Consider the difference quotient

$$
\frac{f(x) - f(0)}{x - 0} \ x \neq 0.
$$

When x is rational, it is equal to x and, when x is irrational, it is equal to 0. Therefore,

$$
\left| \frac{f(x) - f(0)}{x - 0} - 0 \right| \le |x| \; .
$$

For every $\varepsilon > 0$, we take $\delta = \varepsilon$, then

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|\leq|x|<\varepsilon,\quad x\neq0, |x|<\delta.
$$

We conclude that $f'(0) = 0$.

7.
$$
\frac{g(x) - g(c)}{x - c} = \frac{|f(x)| - |f(c)|}{x - c} = \text{sgn}(x - c) \left| \frac{f(x) - f(c)}{x - c} \right|, \text{ since } f(c) = 0.
$$

\n
$$
g'_{+}(c) = \lim_{x \to c^{+}} \text{sgn}(x - c) \left| \frac{f(x) - f(c)}{x - c} \right| = |f'(c)|.
$$

\n
$$
g'_{-}(c) = \lim_{x \to c^{-}} \text{sgn}(x - c) \left| \frac{f(x) - f(c)}{x - c} \right| = -|f'(c)|.
$$

\nHence *g* is differentiable at *c* iff $g'_{+}(c) = g'_{-}(c) \iff |f'(c)| = -|f'(c)| \iff f'(c) = 0.$

8. (a)
$$
f(x) = |x| + |x + 1| = \begin{cases} 2x + 1, & \text{for } x \ge 0 \\ 1, & \text{for } -1 \le x < 0 \\ -2x - 1, & \text{for } x < -1 \end{cases}
$$

\nClearly, $f'(x) = \begin{cases} 2, & \text{for } x > 0 \\ 1, & \text{for } -1 < x < 0 \\ -2, & \text{for } x < -1 \end{cases}$
\nFor $x > 0$, $\frac{f(x) - f(0)}{x - 0} = \frac{(2x + 1) - 1}{x - 0} = 2 \implies f'_{+}(0) = 2$
\nFor $x < 0$, $\frac{f(x) - f(0)}{x - 0} = \frac{1 - 1}{x - 0} = 0 \implies f'_{-}(0) = 0 \neq 2 = f'_{+}(0)$.
\nSimilar procedures proceed for $x < -1, x > -1$.
\nHence f is differentiable except $0, -1$.

(b)
$$
g(x) = 2x + |x| = \begin{cases} 3x, & \text{for } x \ge 0 \\ x, & \text{for } x < 0 \end{cases}
$$

\nClearly, $g'(x) = \begin{cases} 3, & \text{for } x > 0 \\ 1, & \text{for } x < 0 \end{cases}$
\nFor $x > 0$, $\frac{g(x) - g(0)}{x - 0} = \frac{3x - 0}{x - 0} = 3 \implies g'_{+}(0) = 3$
\nFor $x < 0$, $\frac{g(x) - g(0)}{x - 0} = \frac{x - 1}{x - 0} = 1 \implies g'_{-}(0) = 1$.
\nHence g is differentiable except 0.

(c)
$$
h(x) = x|x| = \begin{cases} x^2, & \text{for } x \ge 0 \\ -x^2, & \text{for } x < 0 \end{cases}
$$

\nClearly, $h'(x) = \begin{cases} 2x, & \text{for } x > 0 \\ -2x, & \text{for } x < 0 \end{cases}$
\nFor $x > 0$, $\frac{h(x) - h(0)}{x - 0} = \frac{x^2 - 0}{x - 0} = x \implies h'_+(0) = 0$
\nFor $x < 0$, $\frac{h(x) - h(0)}{x - 0} = \frac{-x^2 - 0}{x - 0} = -x \implies h'_-(0) = 0$.
\nHence *h* is differentiable on the whole R.

(d)
$$
k(x) = |\sin x| = \begin{cases} \sin x, & \text{for } \sin x \ge 0 \iff 2n\pi \le x \le (2n+1)\pi \\ -\sin x, & \text{for } \sin x < 0 \iff (2n-1)\pi < x < 2n\pi \end{cases}, \forall n \in \mathbb{Z}.
$$
Clearly,
$$
k'(x) = \begin{cases} \cos x, & \text{for } 2n\pi < x < (2n+1)\pi \\ -\cos x, & \text{for } (2n-1)\pi < x < 2n\pi \end{cases}, \forall n \in \mathbb{Z}.
$$
For $n \in \mathbb{Z}$ and $x > 2n\pi$,
$$
\frac{k(x) - k(2n\pi)}{x - 2n\pi} = \frac{\sin x}{x - 2n\pi} = \frac{\sin(x - 2n\pi)}{x - 2n\pi} \implies k'_+(2n\pi) = 1
$$
For $n \in \mathbb{Z}$ and $x < 2n\pi$,
$$
\frac{k(x) - k(2n\pi)}{x - 2n\pi} = \frac{-\sin x}{x - 2n\pi} = -\frac{\sin(x - 2n\pi)}{x - 2n\pi}
$$

$$
\implies k'_-(2n\pi) = -1
$$
Similar procedures proceed for $x < (2n+1)\pi, x > (2n+1)\pi, n \in \mathbb{Z}.$

Hence, k is differentiable except $n\pi$ for $n \in \mathbb{Z}$.

9.
$$
f'(-x) = \frac{f(-x+h) - f(-x)}{h} = -\lim_{h \to 0} \frac{f(x-h) - f(x)}{-h} = -\lim_{h' \to 0} \frac{f(x+h') - f(x)}{h'} = -f'(x).
$$

\nHence f' is an odd function.
\n
$$
g'(-x) = \frac{g(-x+h) - g(-x)}{h} = \lim_{h \to 0} \frac{[-g(x-h)] - [-g(x)]}{-(-h)} = \lim_{h' \to 0} \frac{g(x+h') - g(x)}{h'} = g'(x).
$$

\nHence g' is an even function.

13. Denote
$$
g(h) := \frac{f(c+h) - f(c)}{h}
$$
. Hence $\lim_{h \to 0} g(h) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = f'(c) \in \mathbb{R}$.
By sequential criterion for limits (Theorem 4.1.8 page 101), denote $h_n := 1/n \neq 0$ for all
n, and $\lim h_n = \lim_{n \to \infty} \frac{1}{n} = 0$, we have $\lim g(h_n) = \lim_{h \to 0} g(h) = f'(c)$, where

$$
g(h_n) = \frac{f(c+1/n) - f(c)}{1/n} = n\{f(c+1/n) - f(c)\}
$$
. Hence $f'(c) = \lim (n\{f(c+1/n) - f(c)\})$.
Take $f(x) := \begin{cases} \sin \pi/x, & x > 0 \\ 0, & x \le 0 \end{cases}$.
At $c = 0$, $n\{f(1/n) - f(0)\} = n(0 - 0) = 0 \forall n$.
Hence, $\lim (n\{f(c+1/n) - f(c)\}) = 0$.
However, $f'(c)$ doesn't exist because *f* is not continuous at *c*.

Or, we may take $f := \chi_{\mathbb{Q}} =$ Dirichlet function. Fix $c \in \mathbb{R}$. Then $n{f(c+1/n) - f(c)} = \begin{cases} n(1-1), & c \in \mathbb{Q} \\ n(0, 0), & c \neq 0 \end{cases}$ $n(1, 1), \quad c \in \mathcal{L}$ = 0 $\forall n$.
 $n(0-0), \quad c \notin \mathbb{Q}$ The Dirichlet function $\chi_{\mathbb{Q}}$ is not continuous.

Remark If x is rational and y is irrational, why is $x + y$ irrational?

14. Now $h'(x) = 3x^2 + 2 > 0 \ \forall \ x \in \mathbb{R}$. Hence, by Theorem 6.1.8, h^{-1} is differentiable and $(h^{-1})'(y) = \frac{1}{h'(x)} = \frac{1}{3x^2}$ $\frac{1}{3x^2+2} \quad \forall \ x \in \mathbb{R},$ where y is related to x by $y = h(x)$. For $x = 0$, we have $y = h(0) = 1$, and $(h^{-1})'(1) = \frac{1}{3(0) + 2} = \frac{1}{2}$ 2 For $x = 1$, we have $y = h(1) = 4$, and $(h^{-1})'(4) = \frac{1}{3(1) + 2} = \frac{1}{5}$ 5 For $x = -1$, we have $y = h(-1) = -2$, and $(h^{-1})'(-1) = \frac{1}{3(1) + 2} = \frac{1}{5}$ $\frac{1}{5}$.

Supplementary Exercises

1. Consider the function f defined on $[0, \infty)$

$$
f(x) = x^{\alpha} \sin \frac{1}{x}, \quad \alpha > 0,
$$

and $f(0) = 0$. Determine the range of α in which

- (a) f is continuous on $[0, \infty)$,
- (b) f is differentiable on $[0, \infty)$, and
- (c) f' exists and is differentiable on $[0, \infty)$.

Solution. This function is smooth, that is, infinitely many times differentiable on $(0, \infty)$. It suffices to consider the case at $x = 0$.

(a) As

$$
|x^{\alpha}\sin\frac{1}{x}| \leq x^{\alpha},
$$

by Sandwich rule

$$
\lim_{x \to 0^+} x^{\alpha} \sin \frac{1}{x} = 0 ,
$$

so f is continuous at $x = 0$ hence we conclude that it is continuous on $[0, \infty)$.

(b) By definition,

$$
f'(0) = \lim_{x \to 0^+} \frac{x^{\alpha} \sin \frac{1}{x} - 0}{x - 0} = \lim_{x \to 0^+} x^{\alpha - 1} \sin \frac{1}{x} = 0,
$$

when $\alpha > 1$. This limit does not exist when $\alpha \in (0, 1]$. So f is differentiable on $[0, \infty)$ if and only if $\alpha \in (1,\infty)$.

(c) The derivative of f is

$$
f'(x) = \alpha x^{\alpha - 1} \sin \frac{1}{x} - x^{\alpha - 2} \cos \frac{1}{x}, \quad x \in (0, \infty),
$$

and $f'(0) = 0$. At $x = 0$, using the definition of the derivative, we have, for $\alpha > 1$,

$$
f''(0) = \lim_{x \to 0^+} \frac{\alpha x^{\alpha - 1} \sin \frac{1}{x} - x^{\alpha - 2} \cos \frac{1}{x} - 0}{x - 0} = \lim_{x \to 0^+} \alpha x^{\alpha - 2} \sin \frac{1}{x} - x^{\alpha - 3} \cos \frac{1}{x} = 0,
$$

when $\alpha \in (3,\infty)$. The limit does not exist when $\alpha \in (0,3]$. We conclude that f' is differentiable on $[0, \infty)$ if and only if $\alpha \in (3, \infty)$.

- 2. Find (a) the maximal domain on which the function is well-defined, (b) the domain on which it is continuous and (c) the domain on which it is differentiable in each of the following cases. Justify your answer in (c).
	- (a) $f(x) = |x^2 5x + 6|$.
	- (b) $h(x) = \log(16 x^2)$.
	- (c) $i(x) = \cos |x|$.

Solution.

- (a) The function is the composition of two functions $f(x) = g(h(x))$ where $h(x) = x^2$ $5x + 6$ and $g(y) = |y|$. Both g and h are continuous on R. As continuity if preserved under composition, f is continuous on $(-\infty, \infty)$. Next, write $f(x) = |x^2 - 5x + 6| = |x - 2||x - 3|$. It is known that $x \mapsto |x - 2|$ is not differentiable at 2 and $x \mapsto |x-3|$ is non-zero and differentiable at 2. It follows that f is not differentiable at 2. (See the proposition on next page.) By the same reason f is not differentiable at 3. We conclude that f is differentiable on $(-\infty, 2) \cup (2, 3) \cup (3, \infty)$.
- (b) The function $h = \log(16 x^2) = \log(k(x))$ where $k(x) = 16 x^2$ is differentiable everywhere. Using the fact that the log function is defined and smooth only for positive number, h is defined, continuous and differentiable as long as $16 - x^2 > 0$, that is, on $(-4, 4)$.
- (c) j is defined and continuous everywhere. The function $x \mapsto |x|$ is differentiable except at $x = 0$ and $y \mapsto \cos y$ is differentiable everywhere. So j is differentiable at all non-zero x. However, as the derivative of cos y is equal to 0 at $y = 0$. We must examine the differentiability of j at 0 using definition. Indeed, using the fact the cosine function is even,

$$
\lim_{h \to 0} \frac{\cos |h| - \cos 0}{h - 0} = \lim_{h \to 0} \frac{\cos h - 1}{h} = 0,
$$

from which we conclude that j is also differentiable at $x = 0$. Hence j is differentiable everywhere.

A shortcut is to realize that the cosine is an even function, so $j(x) = \cos x$ is differentiable everywhere. In this approach we do not view j as the composite of two functions.

- 3. Find a function which is not differentiable exactly at the following points on $(-\infty, \infty)$ in each of the following cases:
	- (a) *n*-many distinct points $\{a_1, a_2, \cdots, a_n\},\$
	- (b) The set of integers Z, and

(c)
$$
\left\{0, 1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots, \right\}
$$
.

Solution. I forgot to require these functions to be continuous. In the following functions are continuous.

(a)

$$
f(x) = \sum_{k=1}^{n} |x - a_k|.
$$

(b)

$$
g(x) = \sum_{k=-\infty}^{\infty} \varphi(x - k),
$$

where φ is a function which makes a corner at 0 but otherwise smooth and vanishes outside $[-1, 1]$.

(c) You may try this

$$
h(x) = \left| x \sin \frac{\pi}{x} \right| .
$$

Of course, set $h(0) = 0$.

4. A function $f:(a,b)\to\mathbb{R}$ has a symmetric derivative at $c\in(a,b)$ if

$$
f'_{s}(c) = \lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h}
$$

exists. Show that $f'_s(c) = f'(c)$ if the latter exists. But $f'_s(c)$ may exist even though f is not differentiable at c. Can you give an example?

Solution.

$$
\frac{f(c+h) - f(c-h)}{2h} = \frac{f(c+h) - f(c) + f(c) - f(c-h)}{2h}
$$

=
$$
\frac{1}{2} \frac{f(c+h) - f(c)}{h} + \frac{1}{2} \frac{f(c-h) - f(c)}{-h}.
$$

Hence we have

$$
f'_{s}(c) = \lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h}
$$

= $\frac{1}{2} \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} + \frac{1}{2} \lim_{h \to 0} \frac{f(c-h) - f(c)}{-h}$
= $\frac{1}{2} \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} + \frac{1}{2} \lim_{h' \to 0} \frac{f(c+h') - f(c)}{h'}$
= $\frac{1}{2} f'(c) + \frac{1}{2} f'(c) = f'(c)$

Observation. The set-up for $f'_{s}(c) = \lim_{h\to 0} \frac{f(c+h)-f(c-h)}{2h}$ $\frac{2h}{2h}$ doesn't involve the value $f(c)$, a simple idea to construct a counter example is by changing the value $f(c)$ from a differentiable function f , so that the new function is not differentiable at c .

Take $f(x) = \begin{cases} 1, & \text{for } x = c \\ 0, & \text{for } x \neq 0 \end{cases}$ 1, for $x \neq c$. Then $f'_s(c) = \lim_{h \to 0}$ $f(c+h) - f(c-h)$ $\frac{f(c-h)}{2h} = 0.$ But $f'(c)$ doesn't exist since f is not continuous at $x = c$.

5. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy $f(x + y) = f(x)f(y)$ for all $x, y \in \mathbb{R}$. Suppose f is differentiable at 0 with $f'(0) = 1$. Show that f is differentiable on R and $f'(x) = f(x)$ for all $x \in \mathbb{R}$.

Solution. If $f \equiv 0$, then $f'(0) = 0 \neq 1$, contradiction arises. Hence $\exists x_0 \in \mathbb{R}$ s.t. $f(x_0) \neq 0.$

Then
$$
f(x_0) = f(x_0 + 0) = f(x_0)f(0) \Rightarrow f(0) = 1
$$
.
\nAlso, f is differentiable at 0, hence $\lim_{h \to 0} \frac{f(h) - 1}{h} = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = f'(0) = 1$.
\nFix x . For all $h \neq 0$, $\frac{f(x + h) - f(x)}{h} = \frac{f(x)f(h) - f(x)}{h} = f(x)\frac{f(h) - 1}{h}$
\n $\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h} = f(x)$.
\nHence, f is differentiable on \mathbb{R} .

The following observation was discussed in class. I formulate it as a proposition below.

Proposition. Let f and g be defined on (a, b) such that f is not differentiable at $c \in (a, b)$ but g is differentiable at c and $g(c) \neq 0$. Then fg is not differentiable at c.

Proof Assume on the contrary that $h(x) = f(x)g(x)$ is differentiable at c. Then $f(x) = \frac{h(x)}{g(x)}$ is differentiable at c by the quotient rule, contradiction holds.