MATH2060A Solution to Assignment1

Section 6.1

4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$ for rational x and f(x) = 0 for irrational x. Show that f is differentiable at x = 0 and find f'(0).

We claim that f is differentiable at 0 with f'(0) = 0. Consider the difference quotient

$$\frac{f(x) - f(0)}{x - 0} \ x \neq 0.$$

When x is rational, it is equal to x and, when x is irrational, it is equal to 0. Therefore,

$$\left|\frac{f(x) - f(0)}{x - 0} - 0\right| \le |x|$$
.

For every $\varepsilon > 0$, we take $\delta = \varepsilon$, then

$$\left|\frac{f(x) - f(0)}{x - 0} - 0\right| \le |x| < \varepsilon, \quad x \ne 0, |x| < \delta.$$

We conclude that f'(0) = 0.

7.
$$\frac{g(x) - g(c)}{x - c} = \frac{|f(x)| - |f(c)|}{x - c} = \operatorname{sgn}(x - c) \left| \frac{f(x) - f(c)}{x - c} \right|, \text{ since } f(c) = 0.$$
$$g'_+(c) = \lim_{x \to c^+} \operatorname{sgn}(x - c) \left| \frac{f(x) - f(c)}{x - c} \right| = |f'(c)|.$$
$$g'_-(c) = \lim_{x \to c^-} \operatorname{sgn}(x - c) \left| \frac{f(x) - f(c)}{x - c} \right| = -|f'(c)|.$$
Hence g is differentiable at c iff $g'_+(c) = g'_-(c) \iff |f'(c)| = -|f'(c)| \iff f'(c) = 0.$

8. (a)
$$f(x) = |x| + |x+1| = \begin{cases} 2x+1, & \text{for } x \ge 0\\ 1, & \text{for } -1 \le x < 0\\ -2x-1, & \text{for } x < -1 \end{cases}$$

Clearly, $f'(x) = \begin{cases} 2, & \text{for } x > 0\\ 1, & \text{for } -1 < x < 0\\ -2, & \text{for } x < -1 \end{cases}$
For $x > 0, \frac{f(x) - f(0)}{x - 0} = \frac{(2x+1) - 1}{x - 0} = 2 \implies f'_{+}(0) = 2$
For $x < 0, \frac{f(x) - f(0)}{x - 0} = \frac{1 - 1}{x - 0} = 0 \implies f'_{-}(0) = 0 \neq 2 = f'_{+}(0).$
Similar procedures proceed for $x < -1, x > -1$.
Hence f is differentiable except $0, -1$.

(b)
$$g(x) = 2x + |x| = \begin{cases} 3x, & \text{for } x \ge 0\\ x, & \text{for } x < 0 \end{cases}$$

Clearly, $g'(x) = \begin{cases} 3, & \text{for } x > 0\\ 1, & \text{for } x < 0 \end{cases}$
For $x > 0, \frac{g(x) - g(0)}{x - 0} = \frac{3x - 0}{x - 0} = 3 \implies g'_{+}(0) = 3$
For $x < 0, \frac{g(x) - g(0)}{x - 0} = \frac{x - 1}{x - 0} = 1 \implies g'_{-}(0) = 1.$
Hence g is differentiable except 0.

(c) $h(x) = x|x| = \begin{cases} x^2, & \text{for } x \ge 0 \\ -x^2, & \text{for } x < 0 \end{cases}$ Clearly, $h'(x) = \begin{cases} 2x, & \text{for } x > 0 \\ -2x, & \text{for } x < 0 \end{cases}$ For $x > 0, \frac{h(x) - h(0)}{x - 0} = \frac{x^2 - 0}{x - 0} = x \implies h'_+(0) = 0$ For $x < 0, \frac{h(x) - h(0)}{x - 0} = \frac{-x^2 - 0}{x - 0} = -x \implies h'_-(0) = 0.$ Hence *h* is differentiable on the whole \mathbb{R} .

(d)
$$k(x) = |\sin x| = \begin{cases} \sin x, & \text{for } \sin x \ge 0 \iff 2n\pi \le x \le (2n+1)\pi \\ -\sin x, & \text{for } \sin x < 0 \iff (2n-1)\pi < x < 2n\pi \end{cases}, \forall n \in \mathbb{Z}.$$

$$\text{Clearly, } k'(x) = \begin{cases} \cos x, & \text{for } 2n\pi < x < (2n+1)\pi \\ -\cos x, & \text{for } (2n-1)\pi < x < 2n\pi \end{cases}, \forall n \in \mathbb{Z}.$$

$$\text{For } n \in \mathbb{Z} \text{ and } x > 2n\pi, \frac{k(x) - k(2n\pi)}{x - 2n\pi} = \frac{\sin x}{x - 2n\pi} = \frac{\sin(x - 2n\pi)}{x - 2n\pi} \Rightarrow k'_{+}(2n\pi) = 1$$

$$\text{For } n \in \mathbb{Z} \text{ and } x < 2n\pi, \frac{k(x) - k(2n\pi)}{x - 2n\pi} = \frac{-\sin x}{x - 2n\pi} = -\frac{\sin(x - 2n\pi)}{x - 2n\pi} \Rightarrow k'_{+}(2n\pi) = 1$$

$$\text{For } n \in \mathbb{Z} \text{ and } x < 2n\pi, \frac{k(x) - k(2n\pi)}{x - 2n\pi} = \frac{-\sin x}{x - 2n\pi} = -\frac{\sin(x - 2n\pi)}{x - 2n\pi} \Rightarrow k'_{-}(2n\pi) = -1$$

$$\text{Similar procedures proceed for } x < (2n+1)\pi, x > (2n+1)\pi, n \in \mathbb{Z}.$$

Hence, k is differentiable except $n\pi$ for $n \in \mathbb{Z}$.

9.
$$f'(-x) = \frac{f(-x+h) - f(-x)}{h} = -\lim_{h \to 0} \frac{f(x-h) - f(x)}{-h} = -\lim_{h' \to 0} \frac{f(x+h') - f(x)}{h'} = -f'(x).$$

Hence f' is an odd function.
$$g'(-x) = \frac{g(-x+h) - g(-x)}{h} = \lim_{h \to 0} \frac{[-g(x-h)] - [-g(x)]}{-(-h)} = \lim_{h' \to 0} \frac{g(x+h') - g(x)}{h'} = g'(x).$$

Hence g' is an even function.

13. Denote
$$g(h) := \frac{f(c+h) - f(c)}{h}$$
. Hence $\lim_{h \to 0} g(h) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = f'(c) \in \mathbb{R}$.
By sequential criterion for limits (Theorem 4.1.8 page 101), denote $h_n := 1/n \neq 0$ for all n , and $\lim h_n = \lim \frac{1}{n} = 0$, we have $\lim g(h_n) = \lim_{h \to 0} g(h) = f'(c)$, where
 $g(h_n) = \frac{f(c+1/n) - f(c)}{1/n} = n\{f(c+1/n) - f(c)\}$. Hence $f'(c) = \lim (n\{f(c+1/n) - f(c)\})$.
Take $f(x) := \begin{cases} \sin \pi/x, & x > 0\\ 0, & x \leq 0. \end{cases}$
At $c = 0, n\{f(1/n) - f(0)\} = n(0 - 0) = 0 \forall n$.
Hence, $\lim (n\{f(c+1/n) - f(c)\}) = 0$.
However, $f'(c)$ doesn't exist because f is not continuous at c .

Or, we may take $f := \chi_{\mathbb{Q}}$ = Dirichlet function. Fix $c \in \mathbb{R}$. Then $n\{f(c+1/n) - f(c)\} = \begin{cases} n(1-1), & c \in \mathbb{Q} \\ n(0-0), & c \notin \mathbb{Q} \end{cases} = 0 \ \forall n$. The Dirichlet function $\chi_{\mathbb{Q}}$ is not continuous.

Remark If x is rational and y is irrational, why is x + y irrational?

14. Now $h'(x) = 3x^2 + 2 > 0 \ \forall \ x \in \mathbb{R}$. Hence, by Theorem 6.1.8, h^{-1} is differentiable and $(h^{-1})'(y) = \frac{1}{h'(x)} = \frac{1}{3x^2 + 2} \ \forall \ x \in \mathbb{R}$, where y is related to x by y = h(x). For x = 0, we have y = h(0) = 1, and $(h^{-1})'(1) = \frac{1}{3(0) + 2} = \frac{1}{2}$ For x = 1, we have y = h(1) = 4, and $(h^{-1})'(4) = \frac{1}{3(1) + 2} = \frac{1}{5}$ For x = -1, we have y = h(-1) = -2, and $(h^{-1})'(-1) = \frac{1}{3(1) + 2} = \frac{1}{5}$.

Supplementary Exercises

1. Consider the function f defined on $[0,\infty)$

$$f(x) = x^{\alpha} \sin \frac{1}{x}$$
, $\alpha > 0$,

and f(0) = 0. Determine the range of α in which

- (a) f is continuous on $[0,\infty)$,
- (b) f is differentiable on $[0, \infty)$, and
- (c) f' exists and is differentiable on $[0,\infty)$.

Solution. This function is smooth, that is, infinitely many times differentiable on $(0, \infty)$. It suffices to consider the case at x = 0.

(a) As

$$|x^{\alpha}\sin\frac{1}{x}| \le x^{\alpha}$$

by Sandwich rule

$$\lim_{x \to 0^+} x^{\alpha} \sin \frac{1}{x} = 0$$

so f is continuous at x = 0 hence we conclude that it is continuous on $[0, \infty)$.

(b) By definition,

$$f'(0) = \lim_{x \to 0^+} \frac{x^{\alpha} \sin \frac{1}{x} - 0}{x - 0} = \lim_{x \to 0^+} x^{\alpha - 1} \sin \frac{1}{x} = 0 ,$$

when $\alpha > 1$. This limit does not exist when $\alpha \in (0, 1]$. So f is differentiable on $[0, \infty)$ if and only if $\alpha \in (1, \infty)$.

(c) The derivative of f is

$$f'(x) = \alpha x^{\alpha - 1} \sin \frac{1}{x} - x^{\alpha - 2} \cos \frac{1}{x} , \quad x \in (0, \infty)$$

and f'(0) = 0. At x = 0, using the definition of the derivative, we have, for $\alpha > 1$,

$$f''(0) = \lim_{x \to 0^+} \frac{\alpha x^{\alpha - 1} \sin \frac{1}{x} - x^{\alpha - 2} \cos \frac{1}{x} - 0}{x - 0} = \lim_{x \to 0^+} \alpha x^{\alpha - 2} \sin \frac{1}{x} - x^{\alpha - 3} \cos \frac{1}{x} = 0 ,$$

when $\alpha \in (3, \infty)$. The limit does not exist when $\alpha \in (0, 3]$. We conclude that f' is differentiable on $[0, \infty)$ if and only if $\alpha \in (3, \infty)$.

- 2. Find (a) the maximal domain on which the function is well-defined, (b) the domain on which it is continuous and (c) the domain on which it is differentiable in each of the following cases. Justify your answer in (c).
 - (a) $f(x) = |x^2 5x + 6|$.
 - (b) $h(x) = \log(16 x^2)$.
 - (c) $j(x) = \cos |x|$.

Solution.

- (a) The function is the composition of two functions f(x) = g(h(x)) where h(x) = x² 5x + 6 and g(y) = |y|. Both g and h are continuous on ℝ. As continuity if preserved under composition, f is continuous on (-∞, ∞).
 Next, write f(x) = |x² 5x + 6| = |x 2||x 3|. It is known that x → |x 2| is not differentiable at 2 and x → |x 3| is non-zero and differentiable at 2. It follows that f is not differentiable at 2. (See the proposition on next page.) By the same reason f is not differentiable at 3. We conclude that f is differentiable on (-∞, 2)∪(2,3)∪(3,∞).
- (b) The function $h = \log(16 x^2) = \log(k(x))$ where $k(x) = 16 x^2$ is differentiable everywhere. Using the fact that the log function is defined and smooth only for positive number, h is defined, continuous and differentiable as long as $16 - x^2 > 0$, that is, on (-4, 4).
- (c) j is defined and continuous everywhere. The function $x \mapsto |x|$ is differentiable except at x = 0 and $y \mapsto \cos y$ is differentiable everywhere. So j is differentiable at all non-zero x. However, as the derivative of $\cos y$ is equal to 0 at y = 0. We must examine the differentiability of j at 0 using definiton. Indeed, using the fact the cosine function is even,

$$\lim_{h \to 0} \frac{\cos |h| - \cos 0}{h - 0} = \lim_{h \to 0} \frac{\cos h - 1}{h} = 0,$$

from which we conclude that j is also differentiable at x = 0. Hence j is differentiable everywhere.

A shortcut is to realize that the cosine is an even function, so $j(x) = \cos x$ is differentiable everywhere. In this approach we do not view j as the composite of two functions.

- 3. Find a function which is not differentiable exactly at the following points on $(-\infty, \infty)$ in each of the following cases:
 - (a) *n*-many distinct points $\{a_1, a_2, \cdots, a_n\},\$
 - (b) The set of integers \mathbb{Z} , and

(c)
$$\left\{ 0, 1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots, \right\}$$
.

Solution. I forgot to require these functions to be continuous. In the following functions are continuous.

(a)

$$f(x) = \sum_{k=1}^{n} |x - a_k|$$

(b)

$$g(x) = \sum_{k=-\infty}^{\infty} \varphi(x-k),$$

where φ is a function which makes a corner at 0 but otherwise smooth and vanishes outside [-1, 1].

(c) You may try this

$$h(x) = \left| x \sin \frac{\pi}{x} \right|$$

Of course, set h(0) = 0.

4. A function $f:(a,b) \to \mathbb{R}$ has a symmetric derivative at $c \in (a,b)$ if

$$f'_{s}(c) = \lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h}$$

exists. Show that $f'_s(c) = f'(c)$ if the latter exists. But $f'_s(c)$ may exist even though f is not differentiable at c. Can you give an example?

Solution.

$$\frac{f(c+h) - f(c-h)}{2h} = \frac{f(c+h) - f(c) + f(c) - f(c-h)}{2h}$$
$$= \frac{1}{2} \frac{f(c+h) - f(c)}{h} + \frac{1}{2} \frac{f(c-h) - f(c)}{-h}$$

Hence we have

$$\begin{aligned} f'_{s}(c) &= \lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h} \\ &= \frac{1}{2} \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} + \frac{1}{2} \lim_{h \to 0} \frac{f(c-h) - f(c)}{-h} \\ &= \frac{1}{2} \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} + \frac{1}{2} \lim_{h' \to 0} \frac{f(c+h') - f(c)}{h'} \\ &= \frac{1}{2} f'(c) + \frac{1}{2} f'(c) = f'(c) \end{aligned}$$

Observation. The set-up for $f'_s(c) = \lim_{h\to 0} \frac{f(c+h)-f(c-h)}{2h}$ doesn't involve the value f(c), a simple idea to construct a counter example is by changing the value f(c) from a differentiable function f, so that the new function is not differentiable at c.

 $\begin{array}{l} \text{Take } f(x) = \left\{ \begin{array}{ll} 1, & \text{for } x = c \\ 0, & \text{for } x \neq c \end{array} \right. \text{ Then } f_s'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c-h)}{2h} = 0. \end{array} \\ \text{But } f'(c) \text{ doesn't exist since } f \text{ is not continuous at } x = c. \end{array} \right.$

5. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$. Suppose f is differentiable at 0 with f'(0) = 1. Show that f is differentiable on \mathbb{R} and f'(x) = f(x) for all $x \in \mathbb{R}$.

Solution. If $f \equiv 0$, then $f'(0) = 0 \neq 1$, contradiction arises. Hence $\exists x_0 \in \mathbb{R}$ s.t. $f(x_0) \neq 0$.

Then
$$f(x_0) = f(x_0 + 0) = f(x_0)f(0) \Rightarrow f(0) = 1.$$

Also, f is differentiable at 0, hence $\lim_{h \to 0} \frac{f(h) - 1}{h} = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = f'(0) = 1.$
Fix x . For all $h \neq 0$, $\frac{f(x + h) - f(x)}{h} = \frac{f(x)f(h) - f(x)}{h} = f(x)\frac{f(h) - 1}{h}$
 $\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = f(x)\lim_{h \to 0} \frac{f(h) - 1}{h} = f(x).$
Hence, f is differentiable on \mathbb{R} .

The following observation was discussed in class. I formulate it as a proposition below.

Proposition. Let f and g be defined on (a, b) such that f is not differentiable at $c \in (a, b)$ but g is differentiable at c and $g(c) \neq 0$. Then fg is not differentiable at c.

Proof Assume on the contrary that h(x) = f(x)g(x) is differentiable at c. Then $f(x) = \frac{h(x)}{g(x)}$ is differentiable at c by the quotient rule, contradiction holds.